3 分钟阅读

1.模运算(Modular Arithmetic)

Definition

we can define \(x \pmod{m}\) (in words: “\(x\) modulo \(m\)”) to be the remainder \(r\) when we divide \(x\) by \(m\). I.e., if \(x \pmod{m} ≡ r\), then \(x = mq+r\) where \(0 ≤ r ≤ m−1\) and \(q\) is an integer.

Computation

while carrying out any sequence of additions, subtractions or multiplications \(\pmod{m}\), we get the same answer if we reduce any intermediate results \(\pmod{m}\). This can considerably simplify the calculations.

在执行模运算时,如果我们能减少任何中间结果模 m,结果不会变化,但可以大大简化运算。

Set Representation

\(x\) and \(y\) are congruent modulo \(m\) (全等模)

For any integer m, we say that x and y are congruent modulo m if they differ by a multiple of m or, in symbols, \(x ≡ y \pmod{m} ⇐⇒ m\) divides \((x − y).\)

Notice that x and y are congruent modulo m iff they have the same remainder modulo m; in other words,
\(x ≡ y \pmod{m} ⇐⇒ x \pmod{m} = y \pmod{m}.\)

residue classes(剩余类模)

residue classes \(\pmod{m}\): the union of all congruent modulo \(m\).

Theorem 6.1. If \( a \equiv c \pmod{m} \) and \( b \equiv d \pmod{m} \), then \( a + b \equiv c + d \pmod{m} \) and \( a \cdot b \equiv c \cdot d \pmod{m} \).

2.幂运算(Exponentiation)

How do we compute \(x^y\)\(\pmod{m}\), where \(x\), \(y\), and \(m\) are natural numbers and \(m > 0\)?

// 快速幂算法(模幂算法)
algorithm mod-exp(x, y, m)
    if y = 0 then return (1)
    else
        z = mod-exp(x, y div 2, m)
        if y (mod 2) ≡ 0 then return (z * z (mod m))
        else return (x * z * z (mod m))

Bijections(双射)

A bijection is a function for which every \(b ∈ B\) has a unique pre-image \(a ∈ A\) such that \(f(a) = b\).
Lemma: For a finite set \(A\), \(f : A → A\) is a bijection if there is an inverse function \(g : A → A\) such that \(∀x ∈ A\), \(g( f (x)) = x\).

Inverses(逆)

when we wish to divide by \(x \pmod{m}\), we need to find \(y \pmod{m}\) such that \(x · y ≡ 1 \pmod{m}\); then dividing by \(x\) modulo \(m\) will be the same as multiplying by \(y\) modulo \(m\). Such a \(y\) is called the multiplicative inverse of \(x\) modulo \(m\).

乘法逆模只有在 m 与 x 互质时才存在。此外,当存在时,它是唯一的。

Theorem 6.2. Let \(m\), \(x\) be positive integers such that \(gcd(m, x) = 1\). Then \(x\) has a multiplicative inverse modulo \(m\), and it is unique (modulo \(m\)).

\(gcd(x,y)\)表示\(x\)和\(y\)的最大公约数。


Proof

考虑\(m\)个数字的序列\(0,x,2x,...,(m-1)x\),假设它们都是不同的modulo \(m\),而由于从\(0\)到\(m\)只有\(m\)个值可取为模的值,则必须存在\(ax ≡ 1\) \(\pmod{m}\),则\(a\)是\(x\)唯一的乘法逆模。
若对于\( 0 ≤ b ≤ a ≤ m − 1\)存在\(ax ≡ bx\) \(\pmod{m}\),那么则有\((a − b)x ≡ 0\) \(\pmod{m}\),但\(x\)和\(m\)是一对素数,故而产生矛盾,则只有唯一的乘法逆模。
事实上可以证明,上述定理是充要条件。
假设\(x\)有一个逆\(a\),则\(ax ≡ 1\) \(\pmod{m}\),也即\(ax-km=1\),那么根据Bézout's lemma,可以推出\(x\)和\(m\)互质。

欧几里得算法计算逆(Euclid’s Algorithm)

Euclid’s algorithm

Theorem 6.3. Let \(x ≥ y > 0\). Then \(gcd(x, y)\) \(=\) \(gcd(y, x\pmod{y})\).
algorithm gcd(x, y)
     if y = 0 then return(x)
     else return(gcd(y, x (mod y)))

Theorem 6.4. The algorithm above correctly computes the gcd of x and y.

Extended Euclid’s algorithm

algorithm extended-gcd(x, y)
     if y = 0 then return(x, 1, 0)
     else
         (d, a, b) := extended-gcd(y, x (mod y))
         return((d, b, a - (x div y) * b))

Division in modular arithmetic

算术基本定理(Fundamental Theorem of Arithmetic)

Claim: Let \(x\), \(y\), and \(z\) be positive integers such that \(gcd(x, y) = 1\). If \(x | yz\), then \(x | z\).

Fundamental Theorem of Arithmetic: Every positive integer \(n > 1\) can be expressed uniquely in the form \(p_1 p_2 · · · p_k\), where each \(p_i\) is a (not necessarily unique) prime number, up to reordering of the prime factors.

Proof

假设我们可以用两个质因数分解来表示\(n\),\(n = p_1 p_2 · · · p_k \) \(= q_1q_2 · · · q_l\),不妨设\(k ≤ l\);
首先考虑\(p_1\),因为\(p_1|n\),所以有\(p_1|q_1 q_2 · · · q_l\),若\(p_1\)属于\(q_l\),得证;若不属于,对于\(1 ≤ j ≤ l − 1\)有\(gcd(p_1,q_j) = 1\),那么则必有\(p_1 | q_l\),则\(p_1 = q_l\);
类似的,我们可以证明\(p_2 ,p_3 ,··· ,p_k\),在这一过程中,我们会对\(q_j\)进行重新排序。

中国余数定理(Chinese Remainder Theorem)

For \(m\), \(n\) with \(gcd(m, n) = 1\) that there is exactly one \(x\) \( \pmod{mn} \) that satisfies the equations:
\(x ≡ a\) \( \pmod{n} \) and \(x ≡ b\) \( \pmod{m} \).
Chinese Reminder Theorem: Let \( n_1, n_2, \ldots, n_k \) be positive integers that are coprime to each other. Then, for any sequence of integers \( a_i \), there is a unique integer \( x \) between 0 and \( N = \prod_{i=1}^{k} n_i \) that satisfies the congruences: \[ \begin{align*} x &\equiv a_1 \pmod{n_1} \\ x &\equiv a_2 \pmod{n_2} \\ &\vdots \\ x &\equiv a_k \pmod{n_k} \end{align*} \] Moreover, \[ x \equiv \left( \sum_{i=1}^{k} a_i b_i \right) \mod N \]

留下评论